The generator matrix

 1  0  0  0  0  1  1  1  1  0  X  1  X  1  X  0  0  X  0  1  1  X  1  X  1  1  1  1  1  0  1  1  0  0  X  X  1  0  1  X  0  1  1  X  X  X  X  1  X  X  0  1  X  X  1  0  0  X  1  1  1  1  1  1  1  1
 0  1  0  0  0  0  0  0  X  0  0  X  X  0  1  1  1  1  1  1 X+1  1  1  1 X+1 X+1 X+1  1  X  0 X+1  1  X  X  X  1 X+1  1  1  1  1  X  1  X  0  1  1  1  1  1  X  0  X  X  1  1  1  1  0  1  X  X  0  0  0  X
 0  0  1  0  0  0  0  1  1  1  X X+1  1  X  1  0  X  1  1  0  0 X+1 X+1  0  1  X  1  X X+1  1  1 X+1  0  1  0 X+1  X  X  0  X  X  1  0  1  1  1  1  X  X  0  1  1  0  1  X  0  0  1  X  X  X  X  0  0 X+1  1
 0  0  0  1  0  1  X  X  0  X  1 X+1  1 X+1  0  1  0 X+1  1  X X+1  X  1  1 X+1  X  0  X X+1  1  X  1  X  0  1 X+1  1  0  X  X  1  1  0  0  1  1  X  1  1  X X+1  X  0  X X+1  0  1  0  0 X+1 X+1  1 X+1  0  1  1
 0  0  0  0  1  1  1 X+1  0  1 X+1  X  1  X  X  X X+1  0  1  0  0  1  1 X+1  X  1 X+1  1 X+1  X  0  0  1 X+1  0  X  1  X  X X+1  1  0  1 X+1  1 X+1  0  X  0  X  X X+1  1  1  0  X  0  1  X X+1  0  0  X  1  0  1
 0  0  0  0  0  X  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  0  X  X  X  0  X  0  0  X  0  X  X  0  X  X  0  X  0  X  X  X  0  0

generates a code of length 66 over Z2[X]/(X^2) who�s minimum homogenous weight is 58.

Homogenous weight enumerator: w(x)=1x^0+141x^58+273x^60+334x^62+274x^64+228x^66+210x^68+164x^70+156x^72+109x^74+83x^76+38x^78+25x^80+10x^82+2x^84

The gray image is a linear code over GF(2) with n=132, k=11 and d=58.
This code was found by Heurico 1.16 in 0.607 seconds.